skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reigel, Allison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Performance in math, particularly algebra, is a major barrier to student success and participation in STEM among under-represented minoritized students, particularly Black U.S. high school students. This research applies social cognitive career theory (SCCT) to measure the impacts of an afterschool algebra for engineering program on math self-efficacy and interest in STEM among high school students in a large urban district. To study the program’s effects, a mixed methods research design was used where schools were assigned to either treatment or control conditions. Students in treatment schools accessed algebra for engineering modules, STEM professional role model videos, and field trips, while students in control schools accessed role model videos and field trips only. Surveys measuring math self-efficacy and STEM interest, outcome expectations, and choice goals were completed by participants in both conditions at the beginning and end of two separate program years, 2021–2022 and 2022–2023. Across both years, quantitative results suggest some positive effects of participation, particularly for STEM choice goals, but benefits depend upon student participation levels. Qualitative data offer student voice around prior experiences in math and science and the development of postsecondary plans in STEM. In combination, the results suggest that for students who do not initially identify as STEM career-bound, afterschool programming may not necessarily promote preparation for STEM careers due to an accumulation of weak math and science school experiences and other socio-environmental influences. 
    more » « less